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A B S T R A C T   

Alzheimer’s is a type of severe cognitive impairment where an individual cannot do their daily day-to-day ac-
tivities. It is a challenging task to find out the Alzheimer’s and Mild Cognitive Impairment patients. This study 
aims to compare the performance of the state of the art Dynamic Ensemble Selection of Classifier algorithms for 
classifying healthy, Mild Cognitive Impairment, and Alzheimer’s disease participants at the baseline stage itself 
using multimodal features. The data used in the study is from Alzheimer’s Disease Neuroimaging Initiative- 
TADPOLE dataset. The medical imaging, Cerebro-spinal fluid, cognitive test, and demographics data of the 
patients at the baseline visits are considered for the prediction purpose. The performance of the state-of-the-art 
Dynamic Ensemble of Classifier Selection algorithms is compared using these features in terms of Balanced 
Classification Accuracy, Sensitivity, and Specificity. The most commonly used pool of Machine Learning clas-
sifiers is used as the input for Dynamic Ensemble of Classifier Selection algorithms. Moreover, the performance of 
the pool of Machine Learning classifiers without using the Dynamic Ensemble Selection of Classifiers algorithms 
are also compared. The performance metrics such as Balanced Classification Accuracy, Sensitivity, and Speci-
ficity are increased after using the Dynamic Ensemble of Classifier Selection algorithms on most of the pool of 
classifiers for classifying healthy, Alzheimer’s, and Mild Cognitive Impairment patients is promising.   

1. Introduction 

Alzheimer’s Disease (AD) is the sixth most leading cause of death 
among the aged population in the United States [1]. It is also the most 
common dementia among the aged population around the globe [1,2]. 
According to a report by Alzheimer’s disease facts and figures 2018, it is 
estimated that the 7,00,000 people whose age is greater than 65 will 
have AD when they die [1]. Moreover, the report says that most of the 
aged people are dying due to the complications made by AD [1]. Thus, a 
health care practitioner needs to find an AD patient at the baseline visit. 
Finding the patients who are likely to develop severe AD helps the 
physician in designing effective treatment strategies for reducing the 
rate of progression of cognitive destruction [3]. However, it is a chal-
lenging task to predict the persons who are likely to have Alzheimer’s in 
their future life or not [4,5]. This is where an evidence-based approach 
with Machine Learning (ML) helps in finding future AD patients using 
various quantitative biomarker and cognitive measurements [5]. The 
quantitative biomarker data of a person captured using various medical 
imaging techniques such as Magnetic Resonance Imaging (MRI), 

Positron Emission Tomography (PET), and lab data such as 
Cerebro-Spinal Fluid (CSF) along with cognitive measurements, age, sex, 
and education are of great importance in predicting the patients who 
might have AD in their future life [5,6]. ML techniques are used to 
predict the AD patients using these multimodal data and assist the 
physician in appropriate decision making [5]. 

Cognitive impairment is very common among the aged population 
around the globe [1]. The intensity of cognitive impairment varies from 
mild to severe [1,7]. Patients with Mild Cognitive Impairment (MCI) 
face difficulty in doing complex logical activities. However, MCI patients 
can do daily life activities without depending on others. But this is not 
the case for severe cognitive impairment. Severe cognitive impaired 
patients cannot even do simple daily day-to-day activities like bathing, 
brushing which makes their lives miserable [1,8]. AD is such a severe 
impairment that needs special attention. It is to be noted that some MCI 
patients might convert to AD in the future [8]. However, some MCI 
patients remain as mild cognitively impaired without converting to AD 
[9]. Researchers face a challenging task in detecting AD from MCI [10]. 
This is because there are minute variations that help in distinguishing 
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AD from MCI [10]. Moreover, the exact reasons for the occurrence of AD 
are not well-defined [11]. Identifying the AD, MCI, and Healthy Controls 
(HC) helps the physician to design a proper and effective medication 
strategies for dealing with them separately [1,12,13]. For instance, 
identifying an MCI person helps the physician to design the required 
medication for dealing with that. Similarly, if a physician can identify a 
severe AD patient, then he or she can design a more well-planned 
medication strategy for dealing with severe cognitive impairment. In 
short, the medication strategies can be designed based on their severity 
of cognitive impairment. This has mainly two benefits, 1. A more precise 
treatment can be given for an individual based on the severity of their 
cognitive impairment. For example, the physicians can provide separate 
treatments for MCI and AD patients, 2. The unnecessary health care costs 
can be avoided by designing an optimal medication strategy based on 
the severity of cognitive impairment [1,12]. For example, if the physi-
cian can distinguish AD and MCI, then they can design a more focused 
and precise treatment strategy to counter the progression of severe 
cognitive impairment like AD which is more expensive than MCI. 
Likewise, the physician can also design the required and optimal treat-
ment to handle MCI patients that is cheap when compared to AD 
treatments [12]. 

1.1. Related works 

There were many experiments conducted with multimodal data for 
classifying AD, MCI, and HC on the Alzheimer’s Disease Neuroimaging 
Initiative-TADPOLE (ADNI-TADPOLE) dataset [14–17]. The study con-
ducted by the researchers in [18] using 6 MRI biomarkers reported with 
a Multi Area Under the Curve (MAUC) of 0.73. There was an improve-
ment of results using Random Forest (RF) [14,15]. In the study con-
ducted with RF for the classification of AD with longitudinal multimodal 
features (n = 19) reported with a Balanced Classification Accuracy 
(BCA) and MAUC of 73% and 0.82 respectively [14]. In a similar study 
using RF, the researchers predicted the AD using 12 multimodal longi-
tudinal features has achieved a BCA of 86% [15]. This slight improve-
ment in the result was achieved using a mixed-effects model for feature 
selection from the longitudinal data [15]. However, the studies that 
performed data imputation using Recurrent Neural Networks (RNN) 
achieved better prediction results [16,17]. The study conducted by the 
researchers in [16] used SVM with only 6 multimodal features reported 
with a BCA of 86%. Similarly, the study used RNN for less number of 
features (n = 13) achieved a slightly better improvement of BCA and 
MAUC of 86% and 0.866 respectively. All the studies were conducted on 
multimodal features selected from the ADNI-TADPOLE dataset using 
subsequent longitudinal visit data. 

Researchers applied ensemble classifiers for classification tasks in 
biomedical field with good classification results [19,20]. Antonakakis 
et al. [19] used an ensemble of Support Vector Machine (SVM) and K 
Nearest Neighbor (KNN) for classifying mild Traumatic Brain Injury 

(mTBI) patients [19,20]. These were the first studies that used ensemble 
classifiers in the biomedical field. Researchers also used Dynamic 
Ensemble of Classifier Selection (DES) algorithms because it dynami-
cally find a classifier for each test data separately [21]. That is why 
researchers used DES for finding the patterns from complex domains like 
biomedical and image segmentation [21,22]. Rather than finding a 
single classifier for the whole dataset, DES techniques find an ensemble 
of classifiers for each test data dynamically which makes it more effi-
cient and flexible [21,22]. Consequently, this motivated us to the 
experimentation with DES algorithms for predicting MCI, AD, and HC 
using baseline multimodal data. DES techniques reported good perfor-
mances in UCI datasets such as PIMA, Wisconsin Breast Cancer, Wine, 
Iris, Yeast, and Image segmentation [21,23]. The flexibility of the DES 
models in selecting appropriate classifier for each test data using the 
local performance of the pool of classifiers makes it more efficient in 
dealing with complex datasets consists of multiple classes [21,24]. 
Hence, our study focused on experimenting using DES algorithms for 
improving the classification performance of MCI, AD, and HC partici-
pants using baseline multimodal data. The classification improvement of 
AD, MCI, and HC is important for a physician because even a small 
improvement in classification performance helps a physician in effective 
decision making regarding treatment plans that can save and improve 
the quality of human lives [1]. 

We conducted the experiments on the popular Alzheimer’s database 
namely ADNI-TADPOLE dataset. The objective of our study is to report 
the results on the ADNI-TADPOLE dataset by using a larger feature set 
than the previous works, by experimenting on MRI, PET, CSF, cognitive 
tests, age, sex, and education features with only considering baseline 
visit data and check if the performance of the ML classifiers are 
improved for AD, MCI, and HC classifications using DES algorithms. The 
experiments are performed using advanced state of the art DES models 
whose input is the pool of classifiers consists of machine learning and 
deep learning models. A comparison of experimental settings on ADNI- 
TADPOLE with related works is given in Table 1. 

Consequently, We performed a comparative methodology in which 
the baseline multimodal data such as MRI, PET, CSF biomarkers, 
cognitive tests, age, sex, and education data available in the ADNI- 
TADPOLE dataset for predicting the performance of the AD, MCI, and 
HC classification using the state of the art 6 DES algorithms such as K- 
Nearest Oracle Elimination (KNORAE), Meta-Learning for Dynamic 
Ensemble Selection (META-DES), Dynamic Ensemble Selection Perfor-
mance (DESP), K-Nearest Oracle Union (KNORAU), Dynamic Ensemble 
Selection-K Nearest Neighbor (DES-KNN), and Dynamic Ensemble Se-
lection for Multi Imbalanced datasets (DES-MI) whose input is the 8 
ensemble pool of classifiers. The 8 pool of classifiers are as follows:  

• Homogeneous ensembles: Bagged Decision Tree (BDT), Random 
Forest (RF), Extra Trees (ET), Adaboost, and Bagging Multi Layer 
Perceptron (BMLP). 

Table 1 
Comparison of previous works on ADNI-TADPOLE.    

[14] [15] [16] [17] This work 

Feature set Length 6 12 6 13 161  
Modalities MRI, MRI, genetic MRI, PET genetic, MRI, MRI, PET,   

cognitive test, cognitive test, age cognitive test, CSF age, sex CSF,   
genetic CSF   age,       

sex, education, 
Feature type Crosssectional     Yes  

Longitudinal Yes Yes Yes Yes  
Prediction algorithms ML Yes Yes   Yes  

DL   Yes Yes Yes 

The bold values in the tables are the results that needs to be highlighted. 
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• Heterogeneous ensembles: Pooling, bagging, and stacking ensemble 
of ML classifiers such as SVM, Naive Bayes (NB), Logistic Regression 
(LR), and K Nearest Neighbor (KNN). 

Further, the performance of the ensemble pool of classifiers without 
using the DES algorithms are also compared. The performance of the 
models is assessed in terms of BCA, Sensitivity, Specificity. The organi-
zation of the paper is as follows: Section 2 contains materials and 
methods, Section 3 contains experimental results and discussions, Sec-
tion 4 contains study limitations, and Section 5 contains the conclusions. 

2. Materials and methods 

A comparative methodology is used in the paper by analyzing the 
performance of the state of the art 6 DES algorithms with baseline 
multimodality features such as MRI, PET, CSF, cognitive tests, and 
demography in terms of BCA, Sensitivity, and Specificity. Fig. 1 contains 
the overall processing pipeline of the methodology. The overall pro-
cessing pipeline of the methodology in the sequential order is as follows.  

• Data pre-processing  
a. Dataset integration  
b. Manual feature subset selection from MRI, PET, CSF, cognitive 

tests, age, sex, and education data.  
c. Data denoising involves the operations of cleaning the data for 

processing.  
• The segregation of data into training-validation and test sets. The 

fine-tuning and validation of the hyper-parameters of the models are 
performed using a stratified 10 fold cross-validation strategy on the 
training-validation set.  

• Experimenting the 6 DES algorithms namely KNORAE, META-DES, 
DESP, KNORAU, DES-KNN, and DES-MI using a baseline feature 
set for classifying AD, MCI, and HC on the test set. The performance 
of the above algorithms is compared and analyzed for the pools of 
classifiers in terms of BCA, Sensitivity, and Specificity. Further, the 

performance of the pool of classifiers without using the DES algo-
rithms are also compared and analyzed. 

2.1. Dataset description 

The experiments are conducted on ADNI-TADPOLE, a global chal-
lenge dataset initiative for the prediction of AD using multimodal lon-
gitudinal data started in the year 2017 [25]. The ADNI is launched in 
2003 as a public-private partnership, led by principal investigator 
Michael W. Weiner for conducting a study on investigating a data-driven 
approach for finding the early onset of AD with MRI, PET, CSF, genetic 
biomarkers, and other clinical assessment data [26]. The 
ADNI-TADPOLE dataset is selected because it is one of the most 
benchmarking datasets for ML researchers consists of diverse modality 
data that are medically relevant in explaining the progression of AD 
[26]. Moreover, it is the largest openly available dataset for AD re-
searchers that consists of 1737 individuals data in it [26]. The dataset 
consists of 1737 individual patient’s follow-up data collected by ADNI 
studies including ADNI1, ADNI2, and ADNI3. The associated MRI, PET, 
CSF, age, sex, and education data with each patient are collected over 
various time points. There are 3 standard datasets in ADNI-TADPOLE for 
AD diagnosis predictions:  

• D1-TADPOLE standard training dataset: This is a training dataset 
consists of the follow-up data of every individual who have at least 
two separate visits to the ADNI study. The MRI, PET, CSF, cognitive 
tests, demographics, and other clinical assessment data in each of the 
visits are collected using ADNI’s standard data-processing pipelines 
[25]. The standard training dataset is created by merging the 
ADNIMERGE spreadsheet (consists of cognitive tests, age, sex, and 
demographics information) and the MRI, PET, CSF spreadsheets of 
the ADNI [26]. 

• D2-TADPOLE standard prediction dataset: The TADPOLE stan-
dard prediction set contains the whole longitudinal data (including 
all the follow-up time point data) of the previous ADNI participants 
as in the D1 dataset. The data processing pipelines and features 
collected for the individuals are the same as in the D1 dataset [25].  

• D3-Cross sectional prediction dataset: This is a cross-sectional 
data consists of demographics, derived MRI volumes, and cognitive 
tests of the final visit data of the participants as in D2 [25]. 

The whole data is available on the ADNI-TADPOLE website1 and the 
full explanation is given in the paper [25]. 

2.2. Data pre-processing 

This section contains the data pre-processing performed on the 
ADNI-TADPOLE dataset. The data pre-processing is performed sequen-
tially in the following order: dataset integration, feature subset selec-
tion, and data denoising. 

2.2.1. Dataset integration 
The integration of various biomarker quantitative measurements 

collected through MRI, PET, CSF, cognitive tests, and demographics data 
is the initial step. For this, we utilize the data from TADPOLE D1_D2 
(which is created after merging the data from D1 and D2 datasets) [25]. 
The TADPOLE D1_D2 consists of MRI, PET, CSF, cognitive tests, and 
demographics data of the study participants. These are collected from 
various ADNI spreadsheets [26]. This dataset contains the biomarker 
measurements of 1737 participants that are routinely collected over 
various visiting time points. Thus, by using the ADNI-TADPOLE D1_D2 

Fig. 1. The overall processing pipeline of the methodology.  

1 https://ida.loni.usc.edu/pages/access/studyData.jsp?categoryId=43&su 
bCategoryId=94. 

M.N. K. P. and T. P.                                                                                                                                                                                                                           
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dataset in the initial step, we integrated the longitudinal quantitative 
biomarker measurement data from medical imaging modalities (MRI, 
PET), CSF, cognitive tests, and demographics of the study participants. 
However, the ADNI-TADPOLE D3 dataset is excluded from our study 
because it has only the final visit data of the study participant’s and the 
focus is on the baseline visits of the study participant’s [25]. 

It is observed that the count of male participants is greater than that 
of the females for HC in both the D1_D2 dataset. Moreover, the majority 
of participants in the MCI and AD category come under the age group 

between 65 and 85 years in both the D1_D2 dataset for every labels (see 
Table 2). Table 2 contains the demography statistics of the ADNI- 
TADPOLE D1_D2 dataset. 

2.2.2. Feature subset selection 
The next step after dataset integration is to manually select and 

segregate features that belong to medical imaging modalities, CSF, 
cognitive tests, and demographics. The advanced progression of AD can 
be assessed using the quantification of biomarkers that are captured 
using various medical imaging modalities such as MRI and PET. The 
various types of data such as cognitive tests (measuring the cognitive 
memory), CSF, age, sex, and education [25] are also vital in detecting 
AD [25]. The main criterion for manually selecting and segregating into 
the different feature categories are due to the different data acquisition 
techniques that are responsible for acquiring various types of informa-
tion for the AD.2 The MRI biomarkers are derived from the Free Surfer 
longitudinally processed Region of Interest’s (ROI). The PET biomarkers 
used in the dataset are Fluorodeoxyglucose (FDG), Florbetpair or AV45, 
and Cerebral Metabolic Rate for Glucose (CMRgl). The CSF biomarkers 
used in the dataset are: Amyloid-beta, Tau, and P-Tau [25]. The type of 
information captured for AD by the various data acquisition techniques 
are as follows:  

• MRI: MRI imaging modality is used to capture the structural and 
physiological changes in the brain [25]. Appendix A.1 contains the 
MRI features used in our study.  

• PET: PET imaging modality is used to understand cell metabolism 
inside the brain [25]. Appendix A.2 contains the PET features used in 
our study.  

• Cognitive tests: The Cognitive tests are useful in understanding the 

cognitive behaviors of an individual [25]. Appendix A.3 contains the 
cognitive tests used in our study.  

• CSF: CSF is a fluid that is seen in the brain and spinal cord of a person 
[25]. Appendix A.4 contains the CSF features used in our study.  

• Demographics: Age, sex. and education are used in our study. 

Fig. 2. General DES algorithm.  

Table 2 
Summary statistics of the ADNI-TADPOLE D1_D2 dataset.  

Labels Data Value 

HC # Participants 523  
# Male 253  
# Female 270  
# Age<55 (years) NIL  
# Age>55 and Age<65 (years) 15  
# Age>65 and Age<75 (years) 279  
# Age>75 and Age<85 (years) 209  
# Age>85 and Age<95 (years) 20  
Age range of males (years) [59.9,90.1]  
Age range of females (years) [56.2,89.6]  

MCI # Participants 872  
# Male 515  
# Female 357  
# Age<55 (years) 14  
# Age>55 and Age<65 (years) 148  
# Age>65 and Age<75 (years) 353  
# Age>75 and Age<85 (years) 317  
# Age>85 and Age<95 (years) 40  
Age range of males (years) [54.4,91.4]  
Age range of females (years) [55.0,88.4]  

AD # Participants 342  
# Male 189  
# Female 153  
# Age<55 (years) NIL  
# Age>55 and Age<65 (years) 44  
# Age>65 and Age<75 (years) 113  
# Age>75 and Age<85 (years) 153  
# Age>85 and Age<95 (years) 32  
Age range of males (years) [55.9,90.3]  
Age range of females (years) [55.1,90.9]  

2 https://tadpole.grand-challenge.org/Data/. 
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2.2.3. Data denoising 
Following data denoising operations are performed:  

• Baseline visit data: The baseline visit data are only considered for 
our study. The main reason for choosing baseline visit data is to 
create the prediction models by using only the first visit data and 
assist the physician in decision making without considering the next 
consequent visits of the patient.  

• Handling of missing values: The features with more than 50% of 
the missing data are eliminated for the study since the same 
approach is used in the previous works [27,28], and [29]. MissForest 
data imputation algorithm is used for substituting the missing values 
of the features, implemented with the Python MissForest package 
[30–32]. There are mainly three reasons for choosing the MissForest 
technique for data imputation: 1. It does not require any explicit 
hyperparameter tuning, 2. Handles both categorical and numerical 
data easily, 3. Figuring out the non-linear correlation interaction 
between the features [30], [31]. 

After performing the data denoising, the following data preparation 
operations are performed before processing data with the ML classifiers.  

• Changing to appropriate labels: For our study, Stable Mild 
Cognitive Impairment (SMCI), Cognitively Normal (CN) are consid-
ered as HC and Early Mild Cognitive Impairment (EMCI), Late Mild 
Cognitive Impairment (LMCI) are considered as MCI respectively 
[25].  

• Changing to a unified data type format: The values of the feature 
sets are converted to an unified numeric data type using the Pandas 
library of Python [33]. 

2.3. DES algorithms 

DES algorithms dynamically find out the combination of classifiers 
for each test data. The input for the DES algorithm consists of a pool of 
classifiers and a region of competence defined for each test data. The 
region of competence is the k-nearest neighbor training data of the test 
data. Then, the prediction for each training data in the region of 
competence is performed using all the combinations of classifiers. If the 
prediction ability of any of the combination of classifiers is satisfied in 
the region of competence, then the resultant set of classifiers are 
assigned to predict the given test data [34]. Fig. 2 illustrate the general 
definition of the DES algorithm. 

The 6 states of the art DES algorithms are used for analysis namely, 
KNORAE, META-DES, DESP, KNORAU, DES-KNN, and DES-MI. 

KNORAE This DES algorithm finds those set of classifiers from the 
pool of classifiers that correctly classifies all of the K nearest neighbors 
for a given test data in the training set. The ensemble of such chosen 
classifiers is assigned and made eligible for voting for the classification 
of the test data (the majority voting rule is used for the prediction in 
KNORAE). In other words, the algorithm eliminates the classifiers that 
incorrectly classify any one of the data in the neighborhood of the test 
data [21]. In case, if no such classifier is found, then the algorithm keeps 
on reducing the value of nearest neighbors and start the search for at 
least one classifier that classify all the training samples in the neigh-
borhood of test data [21]. 

META-DES This DES algorithm approaches the dynamic classifica-
tion as a meta-problem [35]. The meta-problem for this algorithm is to 
decide whether the given classifier from the pool of classifiers is 
competent enough to classify the given test [35]. There are mainly two 
steps involved in solving this meta-problem: 1. Finding the 
meta-features for all the classifiers in the pool: There are 4 types of 
meta-features namely, (a) posterior probability for each label (the 
probability that the training data in the region of competence belong to 
the output label), (b) The overall Local Accuracy of the classifier in the 
region of competence, (c) Neighbors Hard Classification (a vector of size 

‘n’ is created, where n is the number of training samples in the region of 
competence and if the classifier correctly the sample in the region of 
competence, if the vector is set to 1, otherwise 0. Thus, a vector of size ‘n’ 
is returned.), (d) Classifier’s Confidence (the perpendicular distance 
between the input sample and the decision boundary of the classifier), 2. 
Meta classifiers predict whether the given classifier is capable of giving 
the correct prediction for the given test data using the meta-features 
[35]. Hence, all the classifiers that are chosen by the meta classifiers 
are selected for the ensemble of classifier set for the given test data [35]. 

DESP This DES algorithm eliminates the incompetent classifiers in 
the pool of classifiers by comparing the performance of the classifiers 
with a random classifier [36]. The performance of the random classifier 
is 1/M, where M is the number of classes in the dataset (see the expla-
nation in [36]). The dynamic selection of the classifiers is performed for 
each test data by comparing the performance of the classifiers with the 
random classifier in the defined neighborhood of the test data [36]. If 
the performance of the classifier is greater than that of the random 
classifier, then it is eligible for the selection in the ensemble of classifiers 
for the given test data. If no classifier from the pool is selected, then the 
whole pool of classifiers are chosen for the given test data [23]. 

KNORAU This algorithm finds all the set of classifiers from the pool 
of classifiers that correctly classifies any one of the K nearest neighbors 
of a given test data in the region of competence [21]. In other words, all 
those classifiers that correctly identifies the label of at least any one of 
the training data in the K nearest neighborhood of the test data are 
combined to form an ensemble for the given test data (the majority 
voting rule is used for the prediction in KNORAU). However, the number 
of votes that the classifiers in the ensemble depend on the number of 
correctly classified training set samples in the K neighborhood [21]. 

DES-KNN This proposed DES algorithm in [37] use both diversity 
and Accuracy of the classifiers as the metric for choosing ensembles. 
Initially, the top ‘n’ accurate classifiers in the region of competence of a 
test data are found out. Then, the most ‘m’ diverse among the ‘n’ accu-
rate classifiers are found out [37] and chosen as the ensemble of clas-
sifiers for the given test data. The diversity among the classifiers is found 
out by the metric double-fault measure, which counts the common 
misclassified cases of the classifier [37]. If the double fault measure is 
large, then the diversity of the classifiers are large [37]. For our study, 
the percentage of classifiers selected from the pool for Accuracy and 
diversity are 50% and 30% respectively. These values of Accuracy and 
diversity are selected based on better performance results from previous 
studies [37,38]. The study conducted by the researchers in [37,38] used 
the most diverse 30% classifiers among the high accurate 50% classifiers 
with better results has motivated for choosing these values for our study. 

DES-MI This DES algorithm finds the appropriate classifiers for each 
test data when the dataset is imbalanced [39]. The algorithm finds the 
proportion of the samples of each label in the region of competence and 
then effectively design a weightage for the samples of each label sepa-
rately [39]. In other words, different weightage is given to each label 
based on the proportion of each label in the region of competence. The 
higher weightage is given to the label with low proportion and vice 
versa. Thus, the algorithm balances the under-representation of the 
minority classes in the region of competence [39]. 

The explanation for the implemented algorithms along with the 
reference papers are given in the link.3 

2.3.1. Pool of classifiers 
The following pool of classifiers are used for the DES algorithms: 

homogeneous ensembles such as Bagged Decision Tree (BDT), Random 
Forest (RF), Extra Tree (ET), Adaboost, Bagging Multi-Layer Perceptron 
(BMLP) and heterogeneous ensembles consist of pooling, bagging, and 
stacking ensemble of ML classifiers constituting Naive Bayes (NB), 
Support Vector Machine (SVM), K Nearest Neighbor (KNN), Logistic 

3 https://github.com/scikit-learn-contrib/DESlib. 
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Regression (LR). Appendix B contains detailed information about the 
pool of classifiers. 

2.4. Evaluation criteria 

The BCA, Sensitivity, and Specificity are used to evaluate the per-
formance for classifiying MCI, AD, and HC. The performance metrics are 
evaluated for all the diagnosis labels separately. The overall value of the 
performance metrics is the average of the performance metrics of the 
individual diagnostic labels. 

The explanation of the terms used in all the performance metrics for 
Alzheimer’s diagnosis label4 is as follows: 

TP (True Positive): It is the count of the total number of predictions 
correctly identifying the Alzheimer’s instances as Alzheimer’s. 

TN (True Negative): It is the count of the total number of pre-
dictions that correctly identifying non-Alzheimer’s instances (MCI/HC) 
as non-Alzheimer’s (MCI/HC). 

FP (False Positive): It is the count of the total number of predictions 
that incorrectly predicted the non-Alzheimer’s (MCI/HC) instances as 
Alzheimer’s. 

FN (False Negative): It is the count of the total number of pre-
dictions that incorrectly predicted the Alzheimer’s instances as non- 
Alzheimer’s instances (MCI/HC). 

The explanation of the evaluation metrics is as follows:  

• BCA: 

BCA is a metric used for measuring the Accuracy of imbalanced 
datasets. It is the average of the sum of the Sensitivity and Specificity of 
that label. The BCA of class ′i′ is given in Eq. (1). 

BCAi = 1/2 ∗ [(TP/TP + FN) + (TN/TN + FP)] (1)  

Then, the overall BCA for all the classes is the mean of the individual 
BCA of each class. Eq. (2) contains the overall BCA. 

BCA = 1
/

L ∗
∑L

i=1
BCAi (2) 

Where TP is the True Positives, FN is the False Negatives, TN is the 
True Negatives, FP is the False Positives, and L is the number of classes in 
Eqs. (1) and (2).  

• Sensitivity 

Sensitivity for class ′i′ is given in Eq. (3): 

Sensitivityi = TP/(TP + FN) (3) 

Eq. (8) calculates the Sensitivity for a single class by finding the ratio 
between the True Positives to the sum of the True Positives and False 
Negatives in the confusion matrix for that class. 

The overall Sensitivity is the mean of individual Sensitivity of each 
classes. It is given in Eq. (4): 

Sensitivity = 1
/

L ∗
∑L

i=1
sensitivityi (4) 

Where TP is the True Positives, FN is the False Negatives, L is the 
number of classes in Eqs. (3) and (4).  

• Specificity: 

Specificity for class ′i′ is given in Eq. (5): 

Specificityi = TN/(TN + FP) (5) 

Eq. (5) calculates the Specificity for a single class by finding the ratio 
between the True Negatives to the sum of the True Negatives and False 
Positives in the confusion matrix for that class. 

The overall Specificity is the mean of individual Specificity of each 
classes. It is given in Eq. (6): 

Specificity = 1
/

L ∗
∑L

i=1
Specificityi (6) 

Where TN is the True Negative, FP is the False Positive, L is the 
number of classes in Eqs. (5) and (6). 

3. Experimental results and discussions 

This section contains a detailed explanation of the experimental 
implementation, results, and discussions. 

3.1. Implementation details 

The dataset of 1737 study participants has split into mainly 2 sets 
namely training-validation and test set. 80% of the data is used for 
training-validation and 20% of the data is used for testing purposes. The 
training-validation set consists of 273, 697, 418 numbers of AD, MCI, 
and HC respectively. The testing set consists of 69, 175, and 105 
numbers of AD, MCI, and HC respectively. Hence, an equal proportion of 
the classes for training-validation and testing sets are maintained for the 
experiments. Fig. 3 illustrates the data segregation used for experiments. 

3.1.1. Hyperparameter tuning with Grid Search-Stratified 10 Fold Cross- 
Validation 

Stratified 10 Fold Cross-Validation is performed on the training- 
validation set. The entire training-validation set is divided into 10 
equal-sized folds. Each fold maintains an equal proportion of every label 
using stratified sampling. The reason for selecting the Stratified 10 Fold 
Cross-Validation strategy is because it maintains an equal proportion of 

Fig. 3. Data segregation performed for the experiments.  

4 Similarly, the explanation can be given for the diagnostic labels MCI and 
HC. 
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representation of each label which is a good strategy for imbalanced 
datasets [40–42]. Initially, the model is trained with the nine folds and 
its performance is validated with the remaining one fold in terms of BCA. 
This process is repeated 10 times until all the remaining folds (those are 
part of the training set in the first fold) become a validation set. Then, 
the BCA of every 10 folds is averaged. 

The optimal hyperparameters for the models are found out using the 
Grid Search technique. The Grid Search technique is used to find out an 
optimal set of hyperparameters from a list of already pre-defined 
hyperparameters of a model based on its performance during the 
cross-validation stage [43,44]. It is also one of the most common 
hyperparameter tuning technique used for ML tasks in the health 
domain [44,45]. The possible combination of all the pre-defined 
hyperparameters is found out and the combination of hyper-
parameters with good performance after cross-validation is selected for 
the model using the Grid Search technique. For our experiments, the 
combination of hyperparameters that maximizes the overall BCA 
(average BCA of all the folds) in the Stratified 10 Fold Cross-Validation is 
selected for the model. The reason for using BCA as the performance 
indicator is because it combines both Sensitivity and Specificity of the 
diagnostic labels. Hence, the metric is appropriate for our experiment 
that also has an imbalanced dataset [46]. Fig. 4 contains the framework 
for Grid Search – Stratified 10 Fold Cross-Validation. 

The test set is kept as an unseen set to check the performance of the 
trained models. The main aim of creating the training-validation and 
keeping the testing set as a seperate set is to avoid overfitting. The basic 
idea is to optimize the hyperparameter using the training-validation set 
and keeping the test set as unseen data that do not involve any learning. 
Hence, the test set can be used for evaluating the performance of the 
models. 

All the pool of classifiers is implemented using the scikit-learn 
package of the Python [40]. Hyperparameter tuning using the Grid 
Search is performed on the pool of classifiers for finding the optimal 
hyperparameters. For the homogeneous tree-based classifiers like RF, 
BDT, ET, and Adaboost, the optimal values are found for the 

hyperparameters such as the number of trees and the maximum depth of 
a tree and Gini Index is used as the splitting criteria. Gini Index is the 
most commonly used splitting criteria for RF, BDT, ET, and Adaboost 
also motivated us to use it for our experiments [47–50]. The range of 
values considered for the number of trees are [100, 1000, 2000, 3000, 
4000, 5000,6000] and maximum depth of a tree are [3, 5, 7, 9, 11, 13, 
15] in the Grid Search (see Table 7). Table 7 in the Appendix C contains 
the Grid Search hyperparameter values for the homogeneous tree-based 
classifiers such as RF, BDT, ET, and Adaboost. The optimal number of 
trees and maximum depth are found to be [4000,13], [4000, 13], [4000, 
11] for RF, BDT, and ET respectively. It is observed that for BDT, RF, and 
ET, the BCA starts to reduce when the number of trees becomes 5000, 

Fig. 4. The diagramatic representation of the Grid Search-Stratified 10 Fold Cross-Validation.  

Fig. 5. 3-D visualization of Grid Search hyperparameter tuning of SVM.  
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Fig. 7. 3D scatter-plot of the homogeneous tree classifier’s hyperparameter tuning using Grid Search.  

Fig. 6. 4-D visualization of Grid Search hyperparameter tuning of BMLP.  
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6000 and for all the maximum depth values in the Grid Search (see 
Table 7). However, the optimal value for the number of trees and a 
maximum depth is found to be 5000 and 11 respectively for Adaboost. It 
is also observed that for Adaboost, the BCA starts to reduce when the 
number of trees becomes 6000 and for the all the maximum depth values 
in the Grid Search. Fig. 7 illustrates the 3D scatter-plot for the Grid 
Search hyperparameter values of the RF, BDT, ET, and Adaboost. 

The optimal hyperparameter value for the BMLP such as number of 
MLP’s, batch size, and epoch size of each MLP are found out using the 
Grid Search technique. The most commonly used and efficient Adam 
optimizer activation function is used for the MLP’s [51–53]. The 
learning rate of the MLP’s are selected as 0.01 because it is found as an 
optimal value for the neural networks in health domain especially for 
Alzheimer’s detection [54–56]. The range of values considered for 
number of estimators, batch size, and epoch size are [200, 400, 600, 
800, 1000], [50, 100, 150, 200, 250, 300], [50, 100, 150, 200] 
respectively. The optimal hyperparameter for BMLP is found at: number 
of estimators=800, batch size=300, epoch size=150. Table 8 in Ap-
pendix C contains all the possible combination of hyperparameter values 
using Grid Search for BMLP. Fig. 6 illustrates the 4D scatter plot for the 
Grid Search hyperparameter values of BMLP. 

The RBF kernel is used for the SVM because it is shown to be 
appropriate for large datasets [57]. Grid Search hyperparameter tuning 

is performed for the C and Gamma values of the SVM. The range of 
values considered for C, Gamma values in the Grid Search are [0.1, 1, 10, 
100], [1, 0.1, 0.01, 0.001, 0.0001] respectively. The optimal value of C 
and Gamma hyperparameters are found to be 100 and 0.001 respec-
tively using the Grid Search. Table 9 in Appendix C contains the all the 
possible combination of hyperparameter values using Grid Search for 
SVM. Fig. 5 contains the 3D scatter plot for the Grid Search hyper-
parameter values using SVM. The L2 norm regularization function is 
used in the LR. The nearest neighbor value ′k′ used for the DES algo-
rithms and the KNN classifier in the ML pool of classifiers are the same. 
The reason for selecting the same ′k′ value is based on the approach used 
by the previous researchers who used KNN classifier in the DES algo-
rithms [21,38,39]. Table 4 contains the Python libraries used for 
implementing the ML classifiers. Then, these hyperparameter-optimized 
ML pool of classifiers are applied to the 6 DES algorithms. 

The DES algorithms are implemented using the DESLib library 
package in the Python [58]. Table 3 contains the Python libraries for the 
6 DES algorithms. The nearest neighbor value ′k′ is required for the 
region of competence for all the DES algorithms. They are found out 
using varying values of ′k′. The various values for ′k′ such as 3, 5, 7, and 
9 have experimented for all the DES algorithms with the pool of clas-
sifiers during the cross-validation stage. The ′k′ value with the highest 
overall BCA is selected as the nearest neighbor value for the region of 
competence for the corresponding experiment. For example, if the BCA 
using k = 7 is found to be the highest for KNORAE with RF as the pool of 
classifiers during the cross-validation stage, then k = 5 is used as the 
nearest neighbor parameter for the KNORAE-RF experiment during the 
testing phase. Similarly, the nearest neighbor values are found out for all 
the experiments involving DES algorithms using this strategy. Fig. 8 
contains the BCA for varying values of ′k′ for all the experiments 
involving DES algorithms.5 

3.2. Results 

Table 5 contains the BCA reported for all the experiments using 
stratified 10 fold cross-validation on the training-validation set. It is 
observed that out of all the DES algorithms, META-DES have reported 
with highest BCA of 87% with RF and BDT. Moreover, the results after 
applying DES algorithms to the pool of classifiers are also improved in 
most of the studies (see Table 5). However, the heterogeneous ML en-
sembles are excluded for the testing phase due to their low performance 
in the cross-validation stage (see Table 5). 

The following questions are answered through our experiments: a) 
Which ensemble pool of classifiers using DES algorithms are reported 
with better performances on the test set? b) Whether the same ensemble 
pool of classifiers using DES algorithms outperformed without using the 
DES algorithms on the test set? Table 6 contains a comparison of the pool 
of classifier’s performance using DES and without DES in terms of BCA, 
Sensitivity, and Specificity. on the test set. 

3.2.1. Performance of the ensemble pool of classifiers using the DES 
algorithms on the test set 

Homogeneous DT based classifiers such as RF, BDT, ET has reported 
better classification results as compared to other ensembles such as 
BMLP. Among all the DT homogeneous ensembles, ensmeble of RF, BDT 
with META-DES have achieved a better performance with BCA of 82% 
and 81.5% respectively. The ensemble of ET with DESP also achieved a 
better performance with BCA of 82%. As far as Sensitivity is concerned, 
the ensemble of both RF and BDT with META-DES has outperformed 
other algorithms with the Sensitivity of 80% using META-DES (see 

Table 4 
Algorithms used in the ensemble pool of classifiers with the Python packages.  

Algorithm Sub- 
algorithms 

Python Library 

BDT Bagging sklearn.ensemble. 
BaggingClassifier  

DT sklearn.tree. 
DecisionTreeClassifier 

RF NIL sklearn.ensemble. 
RandomForestClassifier 

ET NIL sklearn.ensemble. 
ExtraTreesClassifier 

Adaboost NIL sklearn.ensemble.Adaboost 
BMLP Bagging sklearn.ensemble. 

BaggingClassifier  
MLP sklearn.neural_network. 

MLPClassifier 
Pooling, Bagging, Stacking 

ML classifiers 
NB sklearn.naive_bayes.GaussianNB  

SVM sklearn.svm.svc  
LR sklearn.linear_model. 

LogisticRegression  
KNN sklearn.neighbors. 

KNeighborsClassifier  
Pooling NIL (used list concatenation)  
Bagging sklearn.ensemble. 

BaggingClassifier  
Stacking sklearn.ensemble. 

StackingClassifier  

Table 3 
Algorithms used in the DES algorithms with the Python packages.  

Algorithm Python Library 

KNORAE deslib.des.knora_e.KNORAE 
META-DES deslib.des.meta_des.METADES 
DES-P deslib.des.des_p.DESP 
KNORAU deslib.des.knora_u.KNORAU 
DES-KNN deslib.des.des_knn.DESKNN 
DES-MI deslib.des.des_mi.DESMI  

5 Results for heterogeneous ensembles are not shown due to poor 
performances. 
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Fig. 8. The overall BCA for varying nearest neighbor values of the DES algorithms.  

Table 5 
Cross-validation BCA for all the experiments.  

Algorithm BDT RF ET Adaboost BMLP Pooling ML Bagging ML Stacking ML 

KNORAE 86% 86% 85% 83% 78% 33% 33% 44% 
META-DES 87% 87% 86% 84% 80% 30% 22% 33% 
DESP 85% 86% 86% 82% 78% 33% 33% 33% 
KNORAU 86% 87% 86% 83% 78% 33% 33% 33% 
DES-KNN 84% 82% 82% 80% 76% 27% 33% 33% 
DES-MI 85% 85% 84% 84% 76% 33% 48% 46% 
Without DES 85% 85% 84% 81% 79% 28% 33% 33% 

The bold values in the tables are the results that needs to be highlighted. 
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Table 6). The BDT and RF using META-DES have reported the highest 
Sensitivity of 80%. BMLP is reported with a lower BCA, Sensitivity, and 
Specificity in most of the experiments (see Table 6). Neural network 
models are observed to perform better in many cases where there is 
voluminous unstructured data in the form of image, video, and time- 
series [59,60]. However, there are examples and applications where 
DT based classifiers outperformed neural networks [61,62]. Although, it 
is not possible to generalize the classifier that has to be designed for 
input data. In our study, we have utilized the input baseline data which 
is non-time series and structured has reported better results for homo-
geneous DT based ensemble classifiers than the MLP. The homogeneous 
pool of classifiers reported good results with the META-DES algorithm. 
The main difference that takes META-DES apart is that it extracts 
meta-features for each classifier on the defined region of competence. 

3.2.2. Performance of the same ensemble pool of classifiers with and 
without DES algorithms on the test set 

Most of the pool of classifiers after applying the DES algorithms in 
the testing set have shown an improved or same BCA. The BCA is 
decreased for few ensembles such as: RF-DESP, BMLP-KNORAU, BMLP- 
DES-KNN, BMLP-DES-MI) (see Table 6). The improvement in the BCA is 
because DES algorithms choose the ensemble of classifiers for each test 
data based on the performance of the classifiers in the region of 
competence to where does the test data belong to. A typical single 
classifier approach focuses on generalizing the entire test data with that 
classifier. However, flexibility can be achieved in this approach by 
redistributing a set of multiple classifiers to each test data dynamically. 
The test data select the appropriate ensemble of classifiers based on its 
performance in the region of competence (nearest neighbors). This 
approach achieves two things, 1. It helps in redistribution of the 
ensemble of classifiers for each test data that prevents over- 
generalization of an entire test set to a single classifier. 2. The assign-
ing of the ensemble of classifiers for each test data is based on their 

performances in the neighborhood. This can help in finding the worthy 
ensemble of classifiers for that test data. Hence, the DES algorithms are 
capable of increasing the performance of the classifiers. 

3.2.3. Comparison with previous studies 
After thorough observation, we found out that all the related works 

conducted on ADNI-TADPOLE using longitudinal data (consequent visit 
data) [14–16], and [17]. But, our study used the baseline visit data of the 
patients. Consequently, we thought a direct comparison of the results 
between the studies [14–16], and [17] is unfair (see Table 1). 

Our features set is the largest as compared to other related studies, 
and the best performance using the DES algorithm is reported with a 
BCA of 84% using META-DES with BDT as the input pool of classifiers. In 
short, our study contributes to the AD research community by high-
lighting that better results are also reported using only the baseline 
multimodal data of ADNI-TADPOLE such as MRI, PET, CSF, cognitive 
tests, age, sex, and education with classifiers such as BDT, RF, and ET 
using DES algorithms with them. 

4. Study limitations 

Our comparative study reports good results using already existing 
DES algorithms on the ADNI-TADPOLE dataset. Thus, future research 
pinpoints more on the usage of advanced DES algorithms for the clas-
sification of AD. From an ML research point of view, the next focus is to 
develop an advanced DES algorithm that could solve the complex AD 
classification problem using a larger multimodal feature set rather than 
using the already existing black box packages. The other shortcomings 
of the study are that it used only the baseline data of the patients. The 
reason for choosing baseline data is to help the doctor by creating a 
trained baseline model for predicting AD at the baseline visit of a new 
patient. However, there is much more scope for studying the longitu-
dinal features of the patients, and researching an advanced DES for 
longitudinal data is a much needed future work. 

5. Conclusion 

In this paper, we present a comparison of 6 DES algorithms such as 
KNORAE, META-DES, DESP, KNORAU, DES-KNN, and DES-MI for the 8 
input pool of classifiers namely BDT, RF, ET, Adaboost, BMLP, Pooling, 
Bagging, and Stacking of ML classifiers constituting SVM, NB, LR, and 
KNN for classification of AD, MCI, and HC patients using baseline 
multimodal data in terms of BCA, Sensitivity, and Specificity. The per-
formance of the pool of classifiers with DES algorithms is also compared 
without DES. The novelty of this paper lies in the implementation of DES 
algorithms in classifying MCI, AD, and HC. Our results on the popular 
ADNI-TADPOLE suggest that the DES algorithms significantly improved 
the performance of the pool of classifiers in classifying AD, MCI, and HC. 
The best result was reported using the META-DES on RF with a BCA of 
82% on the test set. The classification performance of the most of 
ensemble pool of classifiers is increased with DES algorithms for AD, 
MCI, and HC classification on the test set. However, the classification 
performance of some of the pool of classifiers is reduced after applying 
DES algorithms such as: RF is reduced after applying DESP, and BMLP is 
reduced after applying KNORAU, DES-KNN, and DES-MI. As future 
work, we are planning to experiment with an even larger feature set 
consists of genetic data for classifying AD, MCI, and HC. We are also 
focusing on experimenting and developing efficient DES algorithms for 
the classification of AD, MCI, and HC. Moreover, our study is conducted 
only on the baseline data. So, we are planning to investigate longitudinal 

Table 6 
Comparison of Sensitivity, Specificity, and BCA on the test set using DES 
algorithms.  

Algorithm Metric RF BDT ET Adaboost BMLP 

KNORAE Sensitivity 80% 80% 78% 73% 65%  
Specificity 82% 80% 80% 75% 76%  
BCA 81.5% 80% 79.5% 74% 71%  

META-DES Sensitivity 80% 80% 75% 69% 68%  
Specificity 84% 82% 80% 71% 74%  
BCA 82% 81.5% 77.5% 70% 72%  

DESP Sensitivity 76% 76% 76% 70% 55%  
Specificity 84% 84% 88% 78% 70%  
BCA 80% 80% 82% 74% 63%  

KNORAU Sensitivity 78% 76% 78% 66% 56%  
Specificity 78% 80% 74% 72% 70%  
BCA 78% 78% 76% 69% 63%  

DES-KNN Sensitivity 76% 76% 74% 68% 60%  
Specificity 72% 80% 78% 72% 68%  
BCA 74% 78% 76% 70% 64%  

DES-MI Sensitivity 74% 72% 76% 66% 50%  
Specificity 78% 80% 80% 72% 70%  
BCA 76% 76% 78% 69% 60%  

Without DES Sensitivity 72% 72% 76% 60% 62%  
Specificity 80% 80% 76% 72% 70%  
BCA 76% 76% 76% 66% 66% 

The bold values in the tables are the results that needs to be highlighted. 
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Table 7 
Homogeneous tree classifiers hyperparameter tuning using Grid Search.  

Number of trees Max depth BCA   

RF BDT ET Adaboost 

100 3 83.25% 83.25% 84% 83.25% 
100 5 83.50% 83% 84% 83.5% 
100 7 84% 84% 85% 84% 
100 9 84% 84% 85% 84% 
100 11 85% 85.5% 87% 85% 
100 13 84% 86% 87% 84% 
100 15 84% 85% 84% 84% 
1000 3 85% 85% 85% 85% 
1000 5 85% 85% 85% 85% 
1000 7 85% 85% 85% 85% 
1000 9 85% 85% 85% 85% 
1000 11 86% 86% 87% 86% 
1000 13 86% 87% 87% 86% 
1000 15 85% 85% 85% 85% 
2000 3 85% 85% 85% 85% 
2000 5 85% 85% 85% 85% 
2000 7 85% 85% 85% 85% 
2000 9 85% 85% 85% 85% 
2000 11 86% 86% 87% 86% 
2000 13 86% 87% 87% 86% 
2000 15 85% 85% 85% 85% 
3000 3 85% 85% 85% 85% 
3000 5 85% 85% 85% 85% 
3000 7 85% 85% 85% 85% 
3000 9 85% 85% 85% 85% 
3000 11 86% 86% 87% 86% 
3000 13 86.5% 87% 87% 86% 
3000 15 86% 86% 86% 85% 
4000 3 86% 86% 86% 86% 
4000 5 86% 86% 86% 86% 
4000 7 86% 86% 86% 86% 
4000 9 86% 86% 86% 86% 
4000 11 86% 86% 88% 86% 
4000 13 87.5% 88% 88% 87.5% 
4000 15 85.5% 86% 86% 85.5% 
5000 3 84% 84% 84% 86% 
5000 5 84% 84% 84% 86% 
5000 7 83% 84% 83% 86% 
5000 9 83% 84% 83% 86% 
5000 11 83.75% 84% 85% 87% 
5000 13 85% 85% 85% 88% 
5000 15 84.5% 84.5% 84% 86.5% 
6000 3 84% 84% 82% 86.5% 
6000 5 84% 84% 83% 86.5% 
6000 7 84% 84% 82% 86% 
6000 9 84% 84% 83% 85% 
6000 11 84% 84% 83% 85% 
6000 13 84% 84% 83.5% 85% 
6000 15 84% 84% 83.5% 85% 

The bold values in the tables are the results that needs to be highlighted. 
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Table 8 
Grid Search hyperparameter tuning values for BMLP  

Number of estimators Batch size Epoch size BCA 

200 50 50 73% 
200 50 100 73% 
200 50 150 73% 
200 50 200 73% 
200 100 50 73% 
200 100 100 73% 
200 100 150 73% 
200 100 200 73% 
200 150 50 73% 
200 150 100 73% 
200 150 150 73% 
200 150 200 73% 
200 200 50 73% 
200 200 100 73% 
200 200 150 73% 
200 200 200 73% 
200 250 50 73% 
200 250 100 73% 
200 250 150 73% 
200 250 200 73% 
200 250 50 73% 
200 250 100 73% 
200 250 150 73% 
200 250 200 73% 
200 300 50 75% 
200 300 100 75% 
200 300 150 75% 
200 300 200 75% 
400 50 50 73% 
400 50 100 73% 
400 50 150 73% 
400 50 200 73% 
400 100 50 73% 
400 100 100 73% 
400 100 150 73% 
400 100 200 73% 
400 150 50 73% 
400 150 100 73% 
400 150 150 73% 
400 150 200 73% 
400 200 50 73% 
400 200 100 73% 
400 200 150 73% 
400 200 200 73% 
400 250 50 73% 
400 250 100 73% 
400 250 150 73% 
400 250 200 73% 
400 250 50 73% 
400 250 100 73% 
400 250 150 73% 
400 250 200 73% 
400 300 50 75% 
400 300 100 75% 
400 300 150 75% 
400 300 200 75% 
600 50 50 73% 
600 50 100 73% 
600 50 150 73% 
600 50 200 73% 
600 100 50 73% 
600 100 100 73% 
600 100 150 73% 
600 100 200 73% 
600 150 50 73% 
600 150 100 73% 
600 150 150 73% 
600 150 200 73% 
600 200 50 73% 
600 200 100 73% 
600 200 150 73% 
600 200 200 73% 
600 250 50 73% 
600 250 100 73%  

Table 8 (continued ) 

Number of estimators Batch size Epoch size BCA 

600 250 150 73% 
600 250 200 73% 
600 250 50 73% 
600 250 100 73% 
600 250 150 73% 
600 250 200 73% 
600 300 50 75% 
600 300 100 75% 
600 300 150 75% 
600 300 200 75% 
800 50 50 75% 
800 50 100 75% 
800 50 150 75% 
800 50 200 75% 
800 100 50 75% 
800 100 100 75% 
800 100 150 75% 
800 100 200 75% 
800 150 50 75% 
800 150 100 75% 
800 150 150 75% 
800 150 200 75% 
800 200 50 75% 
800 200 100 75% 
800 200 150 75% 
800 200 200 75% 
800 250 50 73% 
800 250 100 73% 
800 250 150 73% 
800 250 200 73% 
800 250 50 73% 
800 250 150 75% 
800 250 200 75% 
800 300 50 73% 
800 300 100 75% 
800 300 150 80% 
800 300 200 79% 
1000 50 50 75% 
1000 50 100 75% 
1000 50 150 73% 
1000 50 200 73% 
1000 100 50 73% 
1000 100 100 73% 
1000 100 150 73% 
1000 100 200 73% 
1000 150 50 75% 
1000 150 100 78% 
1000 150 150 78% 
1000 150 200 78% 
1000 200 50 78% 
1000 200 100 78% 
1000 200 150 78% 
1000 200 200 78% 
1000 250 50 75% 
1000 250 100 73% 
1000 250 150 73% 
1000 250 200 73% 
1000 250 50 75% 
1000 250 100 75% 
1000 250 150 75% 
1000 250 200 75% 
1000 300 50 75% 
1000 300 100 76% 
1000 300 150 78% 
1000 300 200 78% 

The bold values in the tables are the results that needs to be highlighted. 
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data as future work. We are also planning to implement feature selection 
algorithms for finding the optimal features. 
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Appendix A. Featureset descriptions 

The description of the various types of features such as MRI, PET, CSF, cognitive tests are as follows: 

A.1 Description about the MRI modality feature set 

The complete set of features used from the MRI modality are as follows:  

• The following 6 features are extracted by the University of California, San Francisco (UCSF) Berkely Medical School, and contributed to the ADNI- 
TADPOLE consortium [25]. They are 1. Ventricles: Ventricles Volume, 2. Hippo Campus: Hippocampus Volume, 3. Whole Brain: Whole-brain 
Volume, 4. Entorhinal: Entorhinal Volume, 5. Fusiform: Fusiform Volume, 6. Midtemp: Midtemporal Volume, 7. Intra Cranial Volume: Volume 
of the Intra Cranial region [25].  

• Longitudinal Free Surfer 19 Region of Interest (ROI) based features. The 19 ROI’s are Right Pallidum, Right Paracentral, Right Parahippocampal, 
Right Pars Opercularis, Right Pars Orbitalis, Right Pars Triangularis, Right Pericalcarine, Right Postcentral, Right PosteriorCingulate, Right 
Precentral, Right Precuneus, Right Putamen, Right Rostral Anterior Cingulate, Right Rostral Middle Frontal, Right Superior Frontal, Right 
Supramarginal, Right Temporal Pole, Right Thalamus, Right Transverse Temporal. The structural features such as the volume of White Matter 
(WM) parcellation, surface area, thickness average, and thickness standard deviation of the 19 ROI’s are used in our study [25]. White matter (WM) 
is the tissue through which the information passes between different areas of Grey Matter within the central nervous system [25]. Thus, the volume 
of WM help in identifying the amount of information that passes inside the brain [25]. Consequently, The amount of WM Parcellation is, therefore, 
can be considered as a good indicator in distinguishing AD and MCI [25]. 

A.2 Description about the PET modality feature set 

The complete set of features used from the PET modality are as follows:  

• Fluorodeoxyglucose: Fluorodeoxyglucose (FDG) is used to measure the rate of neurodegeneration inside the brain. FDG is a good indicator of 
finding efficiency in the working of neurons. Therefore, Average FDG of angular, temporal, and posterior cingulate are selected as features [25].  

• Cerebral Metabolic Rate for Glucose (CMRgl), is an indicator of how much blood flow exists in the brain. This is a good parameter to understand the 
information passage in the brain that is ultimately caused by the blood flow in the cells of the brain [25]. AV45 is used to find out the abnormal 
protein namely Amyloid-Beta exists in the brain cells. If the amount of AV45 is large, then the cells are likely to suffer from cognitive decline [25]. 
That is why CMRgl, and AV45 are selected as features for 32 ROI’s that are selected as features in the PET modality. The left and right portions of 
the 32 ROI’s are manually selected as features: Hippocampus right, Frontal Superior Gyrus, Middle Frontal Gyrus, Para Hippocampal, Fusiform, 

Table 9 
Grid Search hyperparameter tuning values for SVM.  

C Gamma BCA 

0.1 1 33% 
1 1 33% 
10 1 33% 
100 1 33% 
0.1 0.1 33% 
1 0.1 33% 
10 0.1 33% 
100 0.1 33% 
0.1 0.01 40% 
1 0.01 40% 
10 0.01 45% 
100 0.01 49% 
0.1 0.001 48% 
1 0.001 48% 
10 0.001 48% 
100 0.001 47% 
0.1 0.0001 47% 
1 0.0001 47% 
10 0.0001 47% 
100 0.0001 47% 

The bold values in the tables are the results that needs to be highlighted. 
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Middle Occipital Lobe, Angular Lobe, Inferior Parietal Lobule, Supramarginal Lobe, Temporal Middle Lobe, Precuneus Lobe, Cingulum Posterior, 
Lingual Gyrus, Frontal Middle Lobe, Frontal Inferior Lobe, Superior Parietal Lobule, Insular Lobe, Cingulum Anterior, Cingulum Middle, Temporal 
Superior Lobe, Temporal Inferior Lobe, Frontal Superior Lobe, Frontal Middle Lobe, Cingulum Posterior, Frontal Superior Medial Lobe, Middle 
Frontal Gyrus Orbital Part, Angular Gyrus, Superior Temporal Gyrus, Rectus Gyrus, Temporal Superior, Parietal Superior Lobe, and Supramarginal 
Gyrus [25]. 

A.3 Description about the cognitive tests feature set 

The set of cognitive tests used in our study are as follows:  

• Clinical Dementia Rating-Scale Box: Clinical Dementia Rating-Scale Box (CDR-SB) test is used to assess the six domains of cognitive and functional 
performance of an individual such as Memory, Orientation, Judgment, Problem Solving, Community Affairs, Hobbies, and Personal Care [63].  

• Mini Mental State Examination: Mini-Mental State Examination (MMSE) is used to assess the cognitive functionalities of an individual such as 
orientation, attention, and memory, and language [64].  

• Alzheimer’s Disease Assessment Scale 11: Alzheimer’s Disease Assessment Scale 11 (ADAS 11) is used to measure the cognitive functionalities such 
as following an ordered command, naming of real objects and fingers, copying of geometric forms, preparation of letter for mailing, orientation, 
word recall test, and word recognition test [65].  

• Alzheimer’s Disease Assessment Scale 13: Alzheimer’s Disease Assessment Scale 13 (ADAS 13) is used to assess the cognitive functionalities of an 
individual. Along with the ADAS 11 tests, two more points are added in the ADAS 13 namely number cancellation task and a delayed free recall task 
[65].  

• Functional Activities Questionnaire: Functional Activities Questionnaire (FAQ) is the neuropsychological test that is used to assess the daily day to 
day activities of an individual such as preparing meals, washing clothes, etc. This test contains questions capable of assessing the daily day to day 
activities of a person [66].  

• Montreal Cognitive Assessment Test: Montreal Cognitive Assessment (MOCA) test is used to assess the level of cognitive impairment. It involves 
tests various cognitive domains such as memory, language, executive functions, visuospatial skills, calculation, abstraction, attention, concen-
tration, and orientation [67]. 

A.4 Description about the CSF feature set 

The set of CSF data used for our study are as follows:  

• Abeta Amyloid Peptides  
• Tau protein 

A.5 Description about demographics feature set 

The demographic features included in the study are age, sex, and education. 

Appendix B. Pool of classifiers 

The complete details about the pool of classifiers used for DES algorithms are as follows: 

B.1 BDT 

A bagging classifier trains individual base classifiers each on the random subsets of the original dataset by considering all the features [68]. For 
example, if there are ′n′ base classifiers, then a random subset of ′n′ training data are trained on each base classifier [68]. The main aim objective of 
bagging is to reduce the variance of the classifiers by training each base classifier on random training subsets and finally making a prediction 
considering all the subsets [68]. 

Decision Tree (DT) is a rule-based classifier that creates a tree-based decision structure for the training data [69]. In other words, a DT contains 
each node as a feature value that represents a test and the leaf node as an outcome for the test. Similarly, DT represents a decision-based structure 
based on feature values [69]. But, DT is more prone to variance as the entire tree is built on the inferences made from a single training set. However, 
the methods like bagging DT can create various DT’s by training on different random subsets and thereby reduce the variance of the training set. Using 
a BDT, each DT is trained on random subsets of the data and aggregated to form the final DT using a bagging classifier [69]. A DES algorithm chooses 
the best dynamic ensemble of DT’s created by the bagging classifier for each test data. 

B.2 RF 

An RF is quite a different version of the BDT in the sense that each DT is created by random samples that are taken with replacement and all the 
features are not considered for creating the DT (features are chosen randomly with replacement) [70]. The main advantage of using an RF is to control 
the overfitting of the data. For example, if there are ′n′ training samples and ′m′ features, then for each tree a random subset from both the ′n′ training 
samples and ′m′ features are chosen with replacement [70]. A DES algorithm choose the best dynamic ensemble of DTs created by the RF for each test 
data. 
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B.3 ET 

ET is a modified version of both BDT and RF because it uses the whole training dataset for creating each DT (not a random subset). Also, the 
splitting points in each tree is chosen randomly (unlike BDT and RF where the splitting is performed by maximizing the information gain or Gini Index) 
[71]. ET do not uses the best split in each tree rather a splitting point is chosen randomly [71]. A DES algorithm chooses the best dynamic ensemble of 
DT’s created by the ET for each test data. 

B.4 Adaboost 

Adaboost classifier is an ensemble of DT’s. It assigns an initial weightage to every sample in the training set and fit into the first DT. If there are any 
misclassified samples, then the weights of those misclassified samples are adjusted (increased) and fit into the second DT. Like wise, in each sub-
sequent DT’s the weights of misclassified samples are adjusted and the process is repeated until the final DT [72,73]. The only difference from RF is 
that it learns and corrects from its predecessor DT’s and also it uses the entire samples in the training set for each tree [72,73]. DES algorithm finds out 
those combinations of DT’s that maximizes the performance (by adjusting the weights of the incorrect samples in the training set in a subsequent 
manner) for each test data dynamically. 

B.5 BMLP 

An MLP is a type of feed-forward neural network which is inspired by the biological human neuron system. Every neural network has an input 
layer, hidden layers (intermediate layers), and an output layer in its [74]. The feature data is fed to the input layer where a random weight and bias are 
given to each input. In the subsequent layers, an activation function is used for non-linear transformation of the data and the output from each layer is 
given as the input layer [74,75]. In the final layer, a loss function is used to calculate the error in the prediction. Hence, an optimization is performed 
based on the loss function and the bias and weights are re-arranged accordingly for better performance [76]. The transformation function is given in 
Eq. (1): 

Transformlayer+1 = Activationlayer((weightlayer ∗ inputlayer − biaslayer) (7) 

Eq. (1) shows that the input for the next layer is the output of the previous layer obtained after performing transformation using the activation 
function on the product of the weight and input of the previous layer subtracted by the bias values. The bias and weight values are randomly get 
updated based on the optimization using the error function. 

Bagging is performed by training with random subsets on multiple MLP’s. A DES algorithm will choose the better performing MLP’s from the 
bagged ensembles for each test data dynamically. 

B.6 Pooling, bagging, and stacking of ML classifiers 

The following ML classifiers are used:  

• SVM: 

SVM is used to find a hyperplane in a n dimensional space that is used to separate or create an optimal boundary between the multi-class data points 
in the dataset. Initially, the algorithm will transform every non-linear input training data into a real-valued function using a Radial Basis Function 
(RBF) [77]. Then, an optimal hyperplane is found out using the transformed values that can maximize the distance between various classes in the 
dataset [77,78].  

• NB: 

The NB classifier is based on the property of the Gaussian function and Baye’s theorem [79]. Initially, the probability of the occurrence of a test 
sample belonging to a label is found out using Baye’s theorem. 

P(X == MCI/f1, f2…fn) = P(f1, f2…fn/X == MCI) ∗ P(X == MCI)/P(f1, f2…fn) (8) 

For example, in Eq. (2) the probability that a test data belongs to MCI labels given there are n features denoted by P(X==MCI/f_1,f_2…f_n) 
(posterior probability) is found out using the Baye’s theorem. Initially, the prior probabilities such as P(X==MCI) denoting the probability of 
occurrence of MCI multiplied by the P(f_1,f_2…f_n/X==MCI) denoting the probability of the occurrence of the n features given the test data belongs to 
MCI divided by the probability of the occurrence of n features denoted by P(f_1,f_2…f_n). Likewise, the posterior probabilities for each of the labels for 
the given test are found out and the test data is assigned the label for which posterior probability is maximum [79]. The probability is found out using 
the Gaussian distribution function [79].  

• LR: 

Logistic Regression forms a hierarchical mode of classification in which the 3-way classification problem is split into two stages. In the first stage, 
the test data is classified into any of the two classes and in the second stage to any of the third class or the chosen class in the first stage. The clas-
sification is performed using the logit function as given in Eq. (3) that considers the non-linearity of the samples by transforming into a log function 
[80]. 

f (x) = log(x/1 − x) (9) 

In Eq. (3), x is the probability of the occurrence of test data belongs to a particular label. The logit function performs a simple log-likelihood 
transformation on this for easy classification. The labels are assigned to the test data depends upon a threshold value set for logit function value. 
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For example, if the value is greater than 0, then it is assigned to label A, otherwise, label B [80].  

• KNN: The KNN algorithm assigns a label to the test data based on the majority of training sample’s labels near to the test data. It is a type of 
supervised algorithm in which all the training samples in the specified (say nearest 1,2…n neighbors) neighborhood and the majority label of the 
training samples is assigned to the test data [81]. 

B.6.1 Pooling ML classifiers 
A pool consists of all the above 4 ML classifiers are created and the DES algorithm chooses the dynamic ensemble from the pool for each test data 

dynamically. 

B.6.2 Bagging ML classifiers 
The 4 ML classifiers are trained using a random subset of the training data. The random subset of the training samples is individually selected for 

each classifier and aggregated to form the ensemble. The DES algorithm chooses from the begged ensembles of the pool of classifiers for each test data 
dynamically [68]. 

Stacking ML clasifiers: The stacked ensemble model consists of base classifiers and a meta classifier. The predictions made by the base classifiers 
are fed as input to the meta classifier [82]. In our study, the predictions made by the 4 ML classifiers such as SVM, NB, LR, and KNN are taken as input 
to the DT, used as meta classifier. A DES algorithm finds out the best combination of base classifiers and meta classifier from the pool for each test data 
dynamically [82]. 

Appendix C. Grid search stratified 10 fold cross-validation hyperparameter tuning 

Following are the overall BCA values for all possible combination of hyperparameter values of the ML classifiers with Grid Search. Table 7 contains 
the Grid Search hyperparameter values for homogeneous tree classifiers such as RF BDT, ET, and Adaboost. 

Table 8 contains the Grid Search hyperparameter tuning values for BMLP. 
Table 9 contains the Grid Search hyperparameter tuning values for SVM. 
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